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PREFACE 
 

 This publication is a revised and expanded edition of a technical report written during the 
Fall of 2008. That technical report was produced during a flurry of activity hurriedly conducted to 
evaluate a body of technical work that was relatively new to this organization. Out of practical 
necessity, the research and code development performed for this project had to be accomplished 
with haste to meet the constraints of schedule. Years later, it seems that the old report is in need of 
much improvement; also, a few additional concepts need to be addressed. Specifically, the 
discussion of confidence regions has been clarified and made more complete. The exposition on 
confidence ellipses is quite new, and in my view, stands as an important addition to the theory 
behind sensitivity testing. Also, the Logit method based upon the logistic distribution has been 
derived in some detail. Additional examples have been added to the exposition, and some effort 
has been invested in placing a more substantial level of detail within these exercises. Hopefully, 
this information will be of help to the reader. Naturally, as with any first version manuscript 
containing lots of equations, the errata list was quite long enumerating typographical mistakes, 
improperly transcribed equations, etc. A fair amount of work has been performed to correct these 
mistakes and improve the quality of the derivations. I hope that I have had some success in cleaning 
up the manuscript, at least in as much as is possible for someone who passed typing class with a 
score of thirty words per minute with five mistakes. 
 
 Statistics is a tough topic, so why expend so much effort on this report? (It is a valid point; 
this discipline is a tough study, and I have spent a lot of time on it). Well, it is important as is 
evidenced by its application in the pharmaceutical industry, specifically in qualifying new 
medications. Of course, there are many other applications for these ideas, particularly for “one-
shot” items that absolutely have to work right when they are used. Secondly, this material is very 
interesting because it integrates different concepts in probability. This integral view of probability 
forces its practitioner to understand more of the science behind the equations. In many cases, 
people gravitate toward a deterministic view of the world where the most of one’s day is thought 
of in terms of absolutes. That is to say, one has for instance a fixed amount of pocket change, 37 
minutes left to the end of the workday, or maybe 93 days left until Christmas. When you begin to 
think in terms of probability, a new paradigm must be adopted. Instead of thinking of these fixed 
quantities, we must think instead of how these quantities are distributed with respect to one or 
more variables. Quantities are addressed in terms of average values and probabilities instead of 
exact values. This idea is important when predicting the behavior of a system with some level of 
certainty. All measurements are subject to uncertainty, and these uncertainties are propagated 
through to a system’s output with a modified level of uncertainty. This idea is nicely illustrated by 
sensitivity analysis where an uncertainty governed by a continuous probability distribution is 
integrated with the discrete binomial distribution. The statistical properties of the combined 
distribution are determined by the algorithms described in this paper. The examples are intended 
to help the reader understand the main concepts. 
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SUMMARY 
 

This report is expository in nature and is intended to explain the basic concept of a 
sensitivity experiment as well as the analysis of its data. These experiments are widely applicable 
to engineering problems that involve binary (pass/fail of go/no-go) outcomes. We begin by 
introducing the simple idea behind a sensitivity experiment; then we describe the basic “Up and 
Down” testing method. Particular emphasis is placed upon the parameter this procedure is intended 
to identify. Next, we describe specific Probit analyses, for analyzing sensitivity test data. A 
specialized version of this scheme is derived for stable digital computation. Confidence region 
estimation is discussed along with an analysis of variance. The Logit method is also presented as 
an alternative to the Probit method. A set of example problems are solved; our results are compared 
with archival solutions. 
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1 INTRODUCTION 

Statistics is a complicated science. Having terrorized dormitories and classrooms across 

the country, its late night, torturous study sessions have earned it a dubious “GPA-busting” 

reputation along with the forlorn appellation Sadistics among captive students. Although it is a 

division of mathematics, it stands aside from the mainstream of this discipline. In fact, its more 

skillful practitioners refer to themselves as probabilists instead of mathematicians. Statistics can 

also incite chagrin among practicing engineers and scientists. In a recent meeting with the author, 

this assertion was reaffirmed as one professional uttered the phrase, “I hate statistics!” 

Why does statistics evoke such negative emotion? There is a reasonable answer for this 

question. Although many professionals are required to use it, they lack the theoretical background 

and experience required in order to understand how statistics works. It is a branch of mathematics 

that differs from subjects like calculus or linear algebra. In these subjects, an individual can learn 

a few basic ideas and apply them in a nearly “cookbook” way to solve problems. Statistics is not 

so cooperative. Statistical or stochastic theory is deeply buried in advanced mathematical theory 

involving topics such as Lesbegue Integration, Measure Theory and Functional Analysis.[1] If 

these topics are well understood, then probabilistic theory is more accessible, and with practice 

statistics becomes understandable. Unfortunately, few people have the time and patience required 

to study and master these disciplines. Hence, statistical theory remains arcane, and its mastery 

eludes all but its most diehard practitioners. 

The difficulty associated with mastering statistical inference presents a true dilemma. 

Statistics is an extremely applied science. It has an extensive number of applications in practically 

every field of engineering or scientific endeavor. But in order to obtain good computational results, 

great care is required while converting abstract statistical theories into practice. After having 
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completed graduate study in stochastic processes, the author now agrees, at least in part, with his 

venerable instructor and thesis supervisor. Statistics is best taught and understood through the use 

of clearly explained examples along with carefully planned excursions into probability theory. We 

have attempted to take this approach in the discussions that follow. He who dares to venture 

directly into the world of stochastic theory is doomed to become lost, perhaps forever. In other 

words, when on this safari, you need a guide. 

This report is designed to be a guide, of sorts. It focuses on analytical methods used to 

process binary (Bernoulli) and binomial statistical trials. A single binary trial or experiment has 

only two possible outcomes, either a success or a failure. A binomial trial may be thought of as a 

series of binary trials taken at the same “level”. The result of a binomial trial consisting of n binary 

experiments is say, p successes and (n – p) failures with a crude probability of success of p/n for a 

particular binomial trial.[2] A binary trial is a special case; it is a binomial trial with n = 1 and p 

can be either 0 or 1. As it happens, Sensitivity Tests are characterized by a mixture or series of 

binary and binomial trials. For military applications, these tests have a great deal of utility since 

many items of military hardware may be used only once and may only be evaluated by pass/fail 

criteria. Many munitions can be thought of in this way. For this reason, we describe the basic 

features of a sensitivity test in the next section of this report. 

 

1.1 Sensitivity Tests 

A general sensitivity test consists of a finite series of either binary or binomial experiments 

(or a mixture of the two). Each experiment is performed at a level defined by distinct value of an 

explanatory variable.[3] The value of the explanatory variable directly corresponds to the 

measurable dosage for this level. The dosage is related to the stimulus, an unmeasurable quantity 
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that drives the outcome of the experiment (or trial) at the chosen level.[4] The stimulus may be 

thought of as a mechanistic (physical, biological, etc.) process that results from the dosage. Each 

binary trial has only two possible outcomes, a success or a failure. If a binomial trial (consisting 

of n binary trials) is conducted at a given level, then without any loss of generality, we can say that 

p successes and (n – p) failures result at this level. A basic assumption behind the sensitivity test 

is that as the dosage (stimulus) increases, then the probability of success also increases. That is to 

say, at “lower” levels of stimulus, we expect more failed trials. As the stimulus increases at higher 

levels, we expect more successful trials, up to the point where practical all individual binary trials 

are successes (or for binomial trials, p equals n).[5] Unfortunately, due to the pass/fail nature of 

each trial’s outcome, we cannot precisely determine the dosage that will result in a success. Instead, 

all that we can do is select a dosage and then, via test, determine whether the critical dosage is 

higher or lower than the test dosage.[6] That is to say, if the test is a success, the critical dosage is 

less than or equal to the test dosage. Conversely, if the test is a failure, then the critical dosage is 

greater than the test dosage. To promote greater understanding, let us consider a basic example of 

sensitivity testing. 

Suppose that a pharmaceutical manufacturer has developed a new antibiotic to fight a 

particular strain of bacterial pneumonia. As a normal part of the certification procedure, an 

effective dosage must be estimated for this drug. The critical dosage is defined as the mass (say, 

in milligrams) of the drug that must be administered to eradicate all invading bacteria with no 

excess antibiotic remaining in the body. As you may imagine, this dosage is impossible to measure. 

Also, the outcome of the test is determined by the stimulus. The stimulus for the problem requires 

a detailed knowledge at the microscopic scale of how the antibiotic interacts with each individual 
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bacterium. This information is not known and cannot be determined, so we must obtain an estimate 

of the effective dosage by sensitivity testing. 

To estimate the effective antibiotic dosage, we select a set of dosage levels for testing, for 

example {0, 10, 20, 30, 40, 50} milligrams. Naturally, this set defines six dosage levels for the 

sensitivity test. We then select a number of healthy test animals (say, Rhesus monkeys) for use 

and decide how many are to be tested. In as much as is possible, the test animals (or test articles) 

should be chosen so that they have the same anatomical and physiological (or physical) 

characteristics.[7] If so desired, we can formulate the entire sensitivity test series as a sequence of 

binary trials, one test animal per trial. To conduct a trial in this sequence, we choose a level and 

infect a test animal with the pneumonia bacteria. Then we wait a pre-specified amount of time and 

administer the dosage for the chosen level to the test animal. In the period of time after 

administering the drug, we determine the response; the test animal either lives (a success) or dies 

(a failure). The response data is collected, and we then move onto the next level and continue 

testing. At the conclusion of the entire sequence, we have determined a number of successes and 

failures at each dosage level. 

This example brings an important fact to light. As we move between trials, we cannot reuse 

test articles, (e.g., test animals). Why? Obviously, if a test animal dies at the preceding trial, it 

cannot be reinfected and tested. If the animal survives the preceding trial, its physiology has been 

altered by the presence of the antibiotic and by the action of its immune system. The animal’s 

bloodstream, lymphatic system and pleural tissues are inundated with antibodies to the pneumonia. 

As a result, it cannot be equivalently reinfected, so the results of a subsequent test would be tainted. 

Once a test article has been exposed to the stimulus, it should not be tested again. The output of a 

complete sensitivity test series may be represented as a plot of percentage success (p/n) versus the 
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dosage (or explanatory variable) level. We observe that the change in the success percentage is 

smaller for low and high dosages while the greatest change occurs near the mean dosage. Hence, 

we assume that the dosage response curve follows the cumulative normal distribution function.[7] 

When a sufficient amount of data has been collected, this assumption is testable.[7] With an 

appropriate number of tests, we can determine the “50% point” for the distribution, the level of 

dosage that causes a successful response for 50% of all like test articles. This value of dosage is 

the mean for the distribution.[2] We are also interested in how success percentages behave for 

dosages further away from the mean. The property is termed as dispersion and is measured by the 

standard deviation. The primary focus of post-test analysis resides in determining these properties 

for the distribution. 

 

1.2 The Bruceton Testing Method 

The mean µ and standard deviation σ must be estimated accurately if our analysis is to 

have real meaning. For this reason, the sensitivity test procedure is designed to concentrate 

measurements around the mean in order to refine the estimate. The Bruceton or “Up and Down” 

test is commonly used for this purpose.[6] The first step in conducting a Bruceton test is to decide 

the range of dosages (minimum to maximum) as well as the dosage levels. We must also decide 

the total number of individual binary trials to be performed during the test series. In practice, we 

require a minimum of 20 trials, but twice that number is recommended since under theoretical 

limitations, the effective sample size is usually half of the actual sample size.[6] Table 1 illustrates 

a notional Bruceton test series. The results of the initial trial are recorded in column T2 while the 

response for the last trial is recorded in column T21. For the initial trial, we choose a dosage (level 

2 in the example) that is believed to be closest to the actual mean. If the outcome of this trial is a  
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Table 1. Illustration of responses for a Bruceton test series. Series consists of 20 binary trials. The notation "x" 
denotes a success while "o" denotes a "failure". Six dosage levels are numbered 1 to 6 from low to high. 

TRIAL 
T 

T 
1 

T 
2 

T 
3 

T 
4 

T 
5 

T 
6 

T 
7 

T 
8 

T 
9 

T 
10 

T 
11 

T 
12 

T 
13 

T 
14 

T 
15 

T 
16 

T 
17 

T 
18 

T 
19 

T 
20 

Lev 1       o               
Lev 2 o    x  o      o        
Lev 3  o  x    o  o  x  o       
Lev 4   x      x  x    o  o    
Lev 5                x  o  o 
Lev 6                   x  

 

Table 2. Summary of the Bruceton test results extracted from Table 1. 

Dosage Level 1 2 3 4 5 6 
Successes (x) 0 1 2 3 1 1 
Failures (o) 1 3 4 2 2 0 

Total Number Trials 1 4 6 5 3 1 
 

success, we conduct the next trial at the dosage just below the initial level. On the other hand, if 

the first trial is a failure, we conduct the second test at the dosage level just above the initial level. 

The dosage level for the third trial is determined in the same manner but is based upon the outcome 

of the second trial. Dosage levels for the remaining trials are determined in the same way, but in 

most cases, we do not use all of the data collected. The reason for excluding some of the data is 

based upon our desire to resolve the normal mean. As we stated above, Bruceton testing 

concentrates measurements in the vicinity of the mean dosage. Since the change in dosage level 

between trials “opposes” the sense of the preceding response, the up and down nature of the test 

series attempts to center data collection at the location of the mean. Unfortunately, if our initial 

guess for the mean dosage level is poor, we automatically introduce extraneous data into the test 

series. Suppose that we have guessed an initial value for the dosage that is too low. Then for two 

or more tests, we will steadily increase the dosage level and obtain failed responses. For example, 

see levels 2 and 3 in Table 1. Let us assume that we obtain a success on the third trial (shown in 
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column 4). This sudden change in the response (indicated by the red block in Table 1) is termed 

as a reversal. It follows that we avoid introducing extraneous “start-up” data by analyzing only 

information obtained beginning with the second trial. In this way, data collection tends to remain 

near the mean. The binomial results of this example test series are shown versus dosage level in 

Table 2. 

1.3 Difficulties with Data Reduction 

Sensitivity testing does have its caveats. In the first place, the test data must contain a zone 

of mixed results.[8] That is to say, the highest level at which a trial fails must exceed the lowest 

level observed for a successful trial. If this condition is not satisfied, the equations for estimating 

σ become inconsistent, and zero is the only value that can be obtained for σ.[9] In the example 

shown in Table 1, “2” is the lowest level corresponding to a success while “5” is the highest level 

containing a failure. Hence, for this example, we obtain a zone of mixed results between levels “2” 

and “5”. The Bruceton test procedure is usually successful in establishing the mixed zone.[8] 

Sensitivity testing also possesses certain intrinsic weaknesses. Since it concentrates on 

resolving the distribution mean, it loses accuracy near the “tails” of the distribution, i.e., the regions 

near 0% and 100% response.[6] For reliability problems, we are most interested in the region 

corresponding to response values exceeding 99%. As a result, care must be taken when sensitivity 

tests are conducted with this purpose in mind. Due diligence must be paid to the structure of the 

dosage levels and to the number of trials. The chosen data analysis methodology is equally 

important since the choice of distribution can have a significant effect in the high probability 

region. In certain cases, the logistic distribution is chosen over the normal distribution due to its 

more conservative nature in the “tails”, i.e., the tails are longer.[10] This shortcoming emphasizes 

the importance of correctly calculating confidence intervals for system reliability probabilities in 
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the tail regions. Secondly, the maximum likelihood estimation (MLE) procedure used to analyze 

the test data generally requires a large data set. For small data sets, MLE loses “efficiency”; the 

estimates of µ and σ become biased and acquire excessive variance.[9] Moreover, MLE may not 

even be able to analyze certain small data sets. A classic example is that of a test series without a 

mixed zone of results.[9] Note that Dixon and Mood have published the disclaimer: “Measures of 

reliability may be very misleading if the sample size is less than forty or fifty.”[6] To cope with 

these potential sources of error, careful test planning must be combined with sound numerical 

estimation techniques. 
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2 TECHNICAL APPROACH 

For experiments designed with a fixed dosage increment, one may obtain the mean µ and 

standard deviation σ (or perhaps other linear fitting parameters) by plotting the percentage of 

successes at each dosage level on probability paper.[7] If this data correlates well with the normal 

distribution, µ and σ may be extracted graphically from the plot. Unfortunately, for certain types 

of sensitivity tests, the dosage cannot be precisely controlled, and the data may not exactly conform 

to the normal distribution. The former difficulty is commonly encountered for system reliability 

test series. To achieve the best estimates of the mean and standard deviation for these tests, we 

usually apply generalized MLE procedures.[4] 

 

2.1 Maximum Likelihood Equation 

The Method of Maximum Likelihood is a powerful estimation procedure that was developed 

by R.A. Fisher during the first two decades of the Twentieth Century. To adapt this method for 

analyzing our sensitivity tests, we apply theoretical concepts from probability. Individual binary 

trials performed in the course of the test series are effectively independent from the standpoint of 

probability. The outcome (or response) of one trial has no effect on the outcome of any other trial. 

If we envision that the outcome of each trial is represented by its own random variable, then in 

terms of the dosage (an explanatory variable), these random variables are identically distributed. 

That is to say, they have the same distribution function and parameters ( µ and σ ). Since the trials 

are independent, the probability of events occurring in two trials is given by the product of their 

individual probabilities. Suppose that a total of ni binary trials are conducted at the ith dosage level. 

Let the success probability at this level be given by pi and the failure probability by 

                                                                  ii pq −= 1                                                              (2.1.1) 
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With these assumptions, the entire test series can be envisioned as a sequence of Bernoulli 

(pass/fail) trials. At this point in the exposition, we invoke Garwood’s mathematical expressions 

for determining a lethal dosage for a drug.[11] In this lexicon, a success is equivalent to a death 

resulting from a dosage while a failure is equivalent to survivor. Moreover, consider that there are 

ni - si  successes (deaths) at a given dosage level and  si  failures (survivors). As an informational 

aside, note that the si are random variables. The associated likelihood function can be written as 

                                                         iii ssn
N

i i

i qp
s
n

L −

=
∏ 








=

1

~                                                       (2.1.2) 

where N is the number of dosage levels; the term in the parentheses is a combination of ni trials 

taken  si  at a time.[11] The combination is used to represent the independence of order for 

Bernoulli trials defined at the same level. Equation (2.1.2) is the product of binomial probability 

distributions formulated at the dosage levels.[2] Applying the natural logarithm of the likelihood 

function lends a great deal of convenience, i.e., 
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where L = ln( L~ ). By maximizing L, the natural log of the likelihood function, we effectively 

maximize L~ . Equation (2.1.3) is referred to as the log-likelihood function. 

 

2.2 Dosage Dependent Probabilities 

To estimate the “mean dosage”, the dosage defined at the level where the probability equals 

0.5, many probabilistic concepts must be brought together. As a result, it is very easy to lose sight 

of important theoretical details. One may note that we have done nothing to connect the MLE 

expression to the dosage (or explanatory variable). Equation (2.1.2) is cast in the form of a 
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binomial probability distribution, but one may note that pi and qi are not yet related to the dosage 

variable. These probabilities are related to the dosage variable though the use of a link function.[4] 

Several link functions are available, but we apply the normal probability distribution function 

commonly used in the “probit” method.[12] The normal distribution is based upon a continuous 

probability density function that must be integrated with respect to the explanatory variable ( xi at 

the ith level) in order to compute pi where 
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Note that by this definition,  pi  is the probability that ( )ixx ,∞−∈  . When (2.2.1) is substituted 

into (2.1.3), we obtain an expression for the log-likelihood function that explicitly depends on the 

dosage level. To promote some simplicity, we define the variable 

                                                               ( )
σ
µ−

=
xxt                                                              (2.2.2) 

and we can rewrite pi as 
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                                              (2.2.3) 

This equation is now in the form of the standard normal distribution.[9] Although (2.1.3), (2.2.2) 

and (2.2.3) are correct from the standpoint of theory, (2.2.2) must be placed in a different form to 

support the estimation procedure. 

 

2.3 Garwood’s Method 

In the course of this research project, the author has encountered a number of different 

solution procedures for (2.1.3), (2.2.2) and (2.2.3). There is similarity between these methods; here 

Garwood’s method is presented.[11] We begin this discussion with an alternate form for t , i.e., 
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This expression is just a linear polynomial in x , but it offers an advantage from the standpoint of 

differential calculus. From (2.3.1), it is easy to show that 

                                                            
β

σ
β
αµ 1; =−=                                                      (2.3.2) 

In the light of (2.1.3) and (2.3.1), critical points, local maxima and minima of L , may be cast in 

ordered pairs ( α, β ) ; they may be determined by solving the system of equations: 
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By differentiating (2.1.3), we may show that 
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where ( )βαθ ,∈ . In this case, we have noted that 
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∂
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∂
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According to (2.2.3), pi is a function of ti , so with the use of the chain rule, we may show that 
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By using the process of differentiation with respect to a parameter to (2.2.3), we have that 
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The derivatives of ti , in the form of θ∂∂ /it , are calculated as 
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Then (2.3.5), (2.3.6), (2.3.7) and (2.3.8) may be applied to show that 
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By substituting (2.3.9) into (2.3.4), we obtain 

                                                         i
i

i
i

N

i ii

i z
n
sq

qp
nL









−=

∂
∂ ∑

=1α
                                            (2.3.10) 

                                                        ii
i

i
i

N

i ii

i zx
n
sq

qp
nL









−=

∂
∂ ∑

=1β
                                           (2.3.11) 

Following Garwood [11], define iς  as 
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Hence, (2.3.10) and (2.3.11) become 
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It is important to derive the second partial derivatives of the log-likelihood function; (2.3.13) and 

(2.3.14) are helpful in this process. With the use of (2.3.12), we observe that 
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By using (2.3.8), we obtain 
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In a similar manner, the remaining second partial derivatives are derived as follows. 
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In order to evaluate (2.3.16) through (2.3.18), an expression for iς ′ ; begin with (2.3.12), and apply 

the quotient rule. 
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The application of (2.1.1) and (2.3.7) yields 
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With careful algebraic simplification, we obtain 

                     







−+








−−








−

′
+−=′

i

i
i

ii

ii

i

i
i

ii

ii

i

i
i

ii

ii

ii

ii
i n

sq
qp
zn

n
sq

qp
zn

n
sq

qp
zn

qp
zn

2

2

2

22

ς                      (2.3.22) 

For the final three terms in (2.3.22), we can extract a common factor, i.e., 
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We have values or expressions for each of the terms in (2.3.23) with the exception of iz′ . An 

equation for this term is easily obtained from (2.3.7). Observe that 
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With the substitution of (2.3.23) and (2.3.24) into (2.3.16) through (2.3.18), we arrive at 

Garwood’s formulas for the second partial derivatives of the log-likelihood function. 

 

2.4 Bernoulli Trial with an Endpoint Probability 

Garwood’s method provides a set of exact formulas for the partial derivatives of the log-

likelihood function with respect to parameters α and β.[11] We have successfully employed these 

formulas to solve test problems, particularly Garwood’s examples. Unfortunately, problems arise 

when this method is applied to sensitivity tests that are comprised of a mixture of binomial and 

binary trials. For endpoint probabilities, those near zero and unity, terms such as iς  and iς ′  

become undefined due the presence of the factor piqi existing in the denominator. For endpoint 

probabilities, 0=iiqp ; this situation is routinely encountered for levels in the explanatory variable 

characterized by a single Bernoulli trial (or its binomial equivalent). After observing this difficulty, 

we elected to revisit the derivation and search for an alternative form of derivatives α∂∂ /L , 

β∂∂ /L , 22 / α∂∂ L , βα ∂∂∂ /2L  and 22 / β∂∂ L . An alternative formulation is easier to control 

near the endpoints. 

 This derivation begins by recalling (2.1.3) for the log-likelihood function. 
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As we differentiate with respect to α, we do so term by term. 
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This expression can be simplified by employing (2.3.7) and (2.3.8) to obtain 
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By similar means, we can show that 
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The form of equations (2.4.5) and (2.4.6) is quite interesting; the summand contains two terms, 

and each of these terms contains a ratio of the probability density function to its cumulative 

distribution function both evaluated at ti (or xi under inverse transformation). The behavior of the 

first (second) term  ~ zi /pi  is questionable as pi → 0 . Conversely, the behavior of the second term 

(~ zi /qi ) requires investigation as pi → 1 (or qi → 0). If we can assert that zi /pi tends to zero as

0→ip , we can exclude this term from (2.4.5) in the limit. This issue is addressed by the following 

proposition. 

Proposition: Let z be the normal probability density function, and let p be its cumulative 

distribution function both defined in the independent variable t. The ratio z/p is well defined and 

tends to zero as p → 0. 

 Proof: By examining equations (2.3.7) and (2.2.3), z and p jointly approach zero if and 

only if  t → -∞. The ratio z/p may be written as follows. 
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The Taylor series expansion for the exponential function, 
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is a convergent power series for .0<x  Hence, it follows that 
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is also a convergent power series for real valued t. To evaluate p, as occurs in (P-1), we compute 

the anti-derivative of (P-3) term by term, i.e., 
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The convergence of this series is confirmed by applying the ratio test. Observe that 
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From this ratio, we conclude that 
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Hence, the power series (P-5) converges for any value of t. Since both of the power series 

representations for the functions in (P-1) are convergent, both have finite limits, say ( )tf  for the 

numerator and ( )tg  for the denominator, so for any real t 
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having invoked the properties of the cumulative distribution function as −∞→t . Since ( )tf  and 

( )tg  are the finite limits of series that converge with the same order, we have that 
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 By using a proof similar to that shown in the preceding proposition, the ratio z/q also 

approaches zero as 1→p ( 0→q ). It follows that (2.4.5) and (2.4.6) can be expressed as 
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and 
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By using the above equations for endpoint probabilities, α∂∂ /L and β∂∂ /L , derivatives of the 

log-likelihood function remain well defined for all possible values of pi and qi. 

 In addition to the Jacobian matrix, we must also use the matrix of second partial derivatives 

or Hessian matrix. The reason for its necessity will be made clear in the next section. We would 
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like to construct the second partial derivatives in terms of the ratios ii pz /  and ii qz / . To derive 

22 / α∂∂ L , we differentiate (2.4.5), i.e., 
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With some careful mathematics and the use of (2.3.7) and (2.3.24), we can show that 
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After substituting (2.4.10) and (2.4.11) into (2.4.9), we obtain 
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Note that (2.4.12) is characterized by the presence of the ratios ii pz /  and ii qz /  but no other terms 

containing zi and pi. The mixed partial derivative is developed as follows. 
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By carefully differentiating and using (2.3.7) and (2.3.8), we can show that 
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By substituting (2.4.14) and (2.4.15) into (2.4.13), the mixed partial derivative is revealed as 



 
Distribution A 

20 

                            ( ) 















−








−








+








−−=

∂∂
∂ ∑

= i

i
i

i

i
i

i

i
i

i

i
ii

N

i
i q

zt
q
zs

p
zt

p
zsnxL

1

2

βα
                     (2.4.16) 

Note that the ratios found in (2.4.12) recur. If (2.4.6) is differentiated, the remaining second order 

partial derivative may be calculated. 
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By simplifying, we have that 
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Substitution of (2.4.14) and (2.4.15), produces 
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To recap, this section presents an alternative formulation of Garwood’s method that is useful in 

evaluating endpoint probabilities. At these endpoints, the second order partial derivatives may be 

computed as follows. 
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For the endpoint probabilities ( 0,1 == qp ) and ( 1,0 == qp ), equations (2.4.7), (2.4.8), (2.4.21), 

(2.4.22) and (2.4.23) are instrumental in supporting the procedure for estimating µ and σ. 

 

2.5 Newton’s Solution Method 

In Sections 2.3 and 2.4, it was demonstrated that we may fit sensitivity test data to the 

normal distribution through Fisher’s Method of Maximum Likelihood.[13] Moreover, the 

procedure requires that we estimate two parameters, the distribution mean and standard deviation, 

µ and σ, respectively. To do so, we must determine α and β satisfying (2.3.3). Estimates of µ and 

σ are obtained by solving equations (2.3.3) cast either in Garwood’s form (Section 2.3) or an 

alternative form (Section 2.4). The fitting procedure takes the form of an iterative scheme; rewrite 

α and β as follows. 

                                                   βββααα ∆+=∆+= 00 ;                                              (2.5.1) 

Substitute (2.5.1) into (2.3.3); when a Taylor series is constructed in variables α and β, observe 

that 
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An iterative estimation scheme may be retaining only the first order terms in (2.5.2) and (2.5.3). 

In matrix form, we have that 
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The 2 x 2 matrix on the left side of (2.5.4) is H , the Hessian matrix, and elements of the Jacobian 

matrix (a vector J


 in this case) resides on the right side. The pair ( )00 ,βα  is designated as a 

starting guess; then the pair ( )βα ∆∆ ,  is an increment that when added to ( )00 ,βα  ostensibly 

forms an improved estimate, a new iterative value for ( )βα , , and by transformation (2.3.2), a new 

estimate for ( )σµ, . The system (2.5.4) may be solved for the increments by inverting H  and 

multiplying from the left. The inverse 2 x 2 matrix 1−H  is easily obtained as long as 

                                                                ( ) 0, 00 ≠βαH                                                        (2.5.5) 

The updated increment ( )βα ∆∆ ,  is calculated from the equation 

                                             [ ] ( ) ( )0000
1 ,,, βαβαβα JT 

•=∆∆ −H                                          (2.5.6) 

It follows that 

                                      [ ] [ ] ( ) ( )0000
1

00 ,,,, βαβαβαβα JTT 
•+= −H                                    (2.5.7) 

where [ ]Tβα ,  is a vector that contains the refined parameter estimates. As with other Newton 

approximation methods, (2.5.7) is easily structured as an iterative scheme. After a number of 

iterations, when this scheme has converged to the desired level of accuracy, the distribution mean 

and standard deviation can be computed from (2.3.2). 
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2.6 Minor Variant of the Golub-Grubbs Method 

 Garwood’s method for probit analysis is highlighted in the preceding sections. This method 

is based upon a linear fit (2.3.1) of the probit. Recall that the probit is the argument to the normal 

probability integral [8] 
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the probit being defined as 

                                                                    
σ
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The maximum likelihood method can be applied with the form (2.6.2). For this variant of the 

method, let ip  be the success probability while is  is the number of successes out of in  trials. In 

this case, the log-likelihood function is written as 
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To determine the value of the explanatory variable x for which the log-likelihood function is 

maximized, it is necessary to differentiate (2.6.3) with respect to µ and σ, i.e., 
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Applying the chain rule along with the derivative of the logarithm, 
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To evaluate (2.6.4) and (2.6.5), the following additional derivatives are required. From (2.6.2), we 

have that 
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Additional derivatives are shown in (2.3.7) and (2.3.24); therefore, 
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Since ii pq −= 1 , 
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By substituting these derivatives into (2.6.6) and (2.6.7), 
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A maximum occurs in the log-likelihood function for the pair ( )σµ ,  when 
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It is also necessary to determine the second partial derivatives 2

2

µ∂
∂ L

, 
σµ ∂∂

∂ L2

 and 2

2

σ∂
∂ L

. Based upon 

the ratios in (2.6.13) and (2.6.14), the following ordinary derivatives are needed. 

                                              





















+








−=

′









=








2

i

i

i

i
i

i

i

i

i

i p
z

p
zt

p
z

p
z

dt
d                                (2.6.16) 

                                              





















−








−=

′









=








2

i

i

i

i
i

i

i

i

i

i q
z

q
zt

q
z

q
z

dt
d                                   (2.6.17) 

                                          
2

2








−








−=

′









=









i

i
i

i

i
i

i

i

i

ii

i

ii

i p
zt

p
zt

p
z

p
zt

p
zt

dt
d

                            (2.6.18) 

                                           
2

2








+








−=

′









=









i

i
i

i

i
i

i

i

i

ii

i

ii

i q
zt

q
zt

q
z

q
zt

q
zt

dt
d

                             (2.6.19) 

Notice that the ratios zi /pi and zi /qi repeatedly occur in these derivatives. With all of these 

derivatives in mind, the second order partial derivatives may be derived as follows. 
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By substituting (2.6.8), (2.6.16) and (2.6.17), 
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Similarly, the mixed partial derivative can be developed as follows. Differentiate (2.6.14) with 

respect to µ. 
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Hence, 
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and by applying (2.6.8), 
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Substituting (2.6.18) and (2.6.19), we obtain 
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The final partial derivative requires a more tedious mathematical development. By differentiating 

(2.2.7), we obtain 
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Application of the product rule produces 
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Simplifying with the use of (2.6.9), we obtain 
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By grouping similar terms, 
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An iterative scheme may be constructed for this method in the same manner as was applied for 

Garwood’s procedure (2.5.2) through (2.5.4). Equations (2.6.13), (2.6.14), (2.6.22), (2.6.26), and 

(2.6.30) can be used to populate the iterative linear system 
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where 

                                                                  
0

0

σσσ
µµµ
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                                                       (2.6.32) 

The components of this system a common factor of 1/σ. Since the absolute value of σ can be quite 

small, it is numerically advantageous to multiply the matrix and vector in (2.6.31) by 2σ . Doing 

so has the effect of increasing the magnitude of the matrix components, particularly the diagonal 

entries. Accomplishing this change enhances the convergence of the iterative scheme. 
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2.7 Analysis of Confidence in the Estimates 

 One tool for analyzing the level of believability associated with the estimate of an unknown 

parameter is the confidence region.[14] The confidence region represents one of the more arcane 

concepts in statistics, so it is best illustrated for a single explanatory variable say, the “ideal” 

dosage for an antibiotic. When the ideal dosage is administered, it should manifest a concentration 

in living tissue that is sufficient for the eradication of the pathogenic bacteria. Given the level of 

uncertainty in dosage measurement, administration and effectiveness, we would like to estimate 

an effective range for dosage quantity and then to attach to it a probabilistic level of assurance. 

The dosage is a quantity represented in one dimension, so in terms of the success probability, its 

range is designated as a confidence interval, and the mathematical process used to determine the 

interval is known as an interval estimate. The end points of the interval act as random variables 

while the statistical parameter theoretically contained within the interval is regarded as fixed, but 

unknown.[13] The concept of the confidence interval can be confusing, so it is instructive to 

explore why this concept can present difficulties. 

 Consider a physical or biological process that exhibits some randomness or “noise”. 

Suppose that the behavior of this process can be characterized, in part, by an unknown, yet fixed 

non-random parameter θ. A good example of this parameter is the mean of a statistical distribution. 

The parameter exists, but its exact value cannot be known. Instead, θ must be estimated via 

experimentation, perhaps by using a series of independent experimental trials. To differentiate it 

from the unknown exact value, the estimated value of θ is denoted as θ̂ . Based also on information 

provided by the experiments, an interval estimate [ ]HL θθ ,  associated with θ̂  may be calculated. 

For this interval, the investigator would compute a probability p for the interval and then make the 

following assertion. 
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CLAIM: With 100p % certainty, the exact value of the parameter θ is contained within [ ]HL θθ , . 

It is in consideration of this assertion that the difficulty arises. Although it sounds 

reasonable, this claim is false. Why? Procedurally, the interval endpoints (values of random 

variables) are calculated based upon the value of θ̂ . Thus, at the conclusion of the experiments (a 

series of Bernoulli of binomial trials), θ̂  is computed; then Lθ  and Hθ  are calculated directly. As 

they pertain to a single set of experiments θ̂ , Lθ  and Hθ are fixed. Since they have been calculated, 

these numbers have no random behavior. Therefore, we cannot assign a probability to any of these 

values, so the claim made above cannot be true. For that reason, it is important to understand the 

true probabilistic interpretation for this situation. 

 Recall that in the mathematics of probability, the interval endpoints are represented by 

random variables. Denote these random variables as LΘ and RΘ . An initial test provides a first 

estimate for these values (and for θ̂ ). If we repeat the same experiment, that is, the series of trials, 

a number of times, we obtain a sequence of values for θ̂ , LΘ and for RΘ . For any one of these 

tests, there is nothing random left to constitute a random interval endpoint. The probabilistic 

aspects of the interval emerge only when we view the series of repeated tests in a larger sense. 

That is, each test becomes a separate realization. In this sense, the interval endpoints fluctuate 

randomly. If 100 tests are performed, then we obtain 100 random intervals [ ]RL ΘΘ , . Therefore, 

randomness is effectively restored to the notion of the interval. With this interpretation, one may 

wonder as to how the faulty claim made above might be replaced by a statistically sound assertion. 

Suppose that we are interested in the parameter θ, and consider a 95% confidence interval 

associated with θ. The statistically sound assertion is made as follows. 
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PROPER CLAIM: Suppose that an unknown statistical parameter θ is estimated in 100 separate, 

repeatable experiments. If 95% confidence interval endpoints are calculated for each experiment, 

then the true value of the parameter θ will be contained in 95 of the 100 intervals. The probability 

that the true value of θ lies within the interval computed for an individual test is either one or zero. 

 

In the paragraphs that follow, the mathematical development of a confidence interval is 

presented. This exposition is not rigorous, but the practical mathematics behind interval 

construction is emphasized. Elementary estimation theory is drawn upon as a core resource. 

 

2.7.1 Success Ratio Confidence Interval 

 For the success ratio (or success probability) confidence interval, the success probability 

p̂  is estimated. The associated interval ],[ RL pp  is determined with a confidence level of C where 

C = 100(1-α)%,     0 < α < 1 

If 100 separate, but identically constructed tests are performed, then 100 estimates of p̂  are 

computed along with 100 intervals ],[ RL pp . Hence, by invoking the proper claim made in the 

previous section, 100(1- α) of these intervals will contain the true success probability. The interval 

endpoints may be derived by using theory associated with the binomial distribution.[15] The 

starting point for this derivation is the DeMoivre-Laplace Theorem where it is assumed that n, the 

number of binomial trials conducted for the experiment, is large. Suppose that Y is the number of 

successful trials and that p is the unknown success probability; then the DeMoivre-Laplace 

theorem states that the ratio z defined by 

                                                        



 
Distribution A 

31 

 

Figure 1 Probability Distribution Function for the Standard Normal Distribution 
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tends toward the standard normal distribution N(0,1), i.e., 
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In terms of probability, this theorem implies that 
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The similarity of (2.7.1.1) to (2.7.1.2) can be illustrated by realizing that for the binomial 

distribution, pn=µ  and ( )ppn −= 12σ .[15] With these substitutions, (2.7.1.1) can be rewritten 

as 

                                                                    
σ
µ−

=
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This expression is identical to (2.2.2), the argument of the standard normal distribution. Denote 

nYp /ˆ =  as the estimate of the success probability; then (2.7.1.3) becomes 
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 N(0,1) is a symmetric function about its zero mean, so a typical confidence interval 

( )2/2/ , αα zz−  is also symmetric about the mean. The probability associated with this interval is 

obtained by integrating the density function (2.6.1.2) over ( )2/2/ , αα zz− . As is illustrated in Figure 

1, the regions ( )2/, αz−∞−  and ( )∞,2/αz  form the “tails” of the distribution. The tails are 

important when determining the probability or confidence coefficient associated with the interval. 

As is shown in Figure 1, the probability (area under the curve) for the tail regions is α. Then the 

confidence coefficient for the interval is defined as 100(1-α)%. For example, consider a confidence 

coefficient of 95%; the attendant value of α is 0.05. It follows that the probability in each tail region 

is α/2 = 0.025. The left interval endpoint on the explanatory z axis for N(0,1) can now be 

determined by solving for 2/αz−  in the cumulative distribution function equation 
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                                           (2.7.1.6) 

Taking (2.6.1.5) into careful consideration, p is identified as the unknown probability while p̂  is 

its estimate. By algebraically solving for p in (2.7.1.3), an interval estimate for p can be obtained 

consistent with the interval probability 1 – α. Collett [4] derives two expressions for the interval; 

the first is derived as follows. Begin by rewriting (2.6.1.5). 
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The bounds of the interval are identified by selecting the equality in (2.7.1.7); by rearranging terms, 

we obtain 
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Additional algebraic manipulation produces the quadratic equation 
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From an analysis of its form, (2.7.1.9) defines a parabola.[15] The roots of this equation delimit 

the endpoints of the confidence interval. Formulas for the endpoints are calculated by using the 

quadratic formula. After some simplification, we obtain 
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This formula contains the so-called standard error, se( p̂ ) for the binomial distribution [4], i.e., 
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With the use of (2.7.1.10) and (2.7.1.11), the interval endpoints pLow and pHigh  are written as 
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These formulas deserve added commentary. Recall that the confidence coefficient is based upon 

N(0,1) and the symmetric interval ( )2/2/ , αα zz− . The interval delineated by (2.7.1.12) and 

(2.7.1.13) is symmetric about the quantity 
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where p~  can be thought of as an observed and rather crude success ratio probability. It is 

interesting to note that p~  does not lie at the center of the interval. Not only has this probability 

been translated off of the estimate, it has also been scaled. Recall that the DeMoivre-Laplace 

theorem states that the binomial distribution tends toward the normal distribution when n becomes 

large. Equation (2.7.1.14) is consistent with the conditions of this theorem. Note that p~  

approaches p̂  as n becomes very large. Equations (2.7.1.12) through (2.7.1.14) delineate a first 

model (denoted as Model 1) for the endpoints of the confidence interval for the success probability. 

 The second model for the success probability is derived by recalling (2.7.1.7). In this case, 

the right hand side of the equation is evaluated by substituting p̂ , the estimate for the success 

probability. By rewriting this expression as an equality at the endpoint, we obtain 
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Hence, with the use of (2.7.1.11), we obtain the second model (denoted as Model 2), i.e., 

                                                          )ˆ(seˆ 2/ pzppLow α−=                                               (2.7.1.16) 



 
Distribution A 

35 

                                                         ( )pzppHigh ˆseˆ 2/α−=                                              (2.7.1.17) 

Model 2 is more commonly used for delineating the endpoints of this confidence interval. 

 

2.7.2 Success Probability Confidence Interval in the Explanatory Variable 

 For sensitivity testing, the binomial distribution remains a critical mathematical construct 

for determining the statistical distribution of the success probability for a random system whether 

it be physical or biological. However, this distribution alone lacks the ability to connect the 

system’s response to an explanatory variable. This deficiency is remedied by replacing p̂  with a 

probability calculated from the cumulative distribution function developed from the fitting 

procedure described in Section 2.3. This function depends upon the distribution produced by fitting 

to the test data. Therefore, it isomorphically maps to the explanatory variable through the 

distribution function. This result allows confidence intervals to be defined on the explanatory 

variable axis. By doing so, success probabilities can be calculated in terms of the explanatory 

variable for the standard normal distribution via (2.2.2) and (2.2.3). To illustrate this concept, let 

us revisit the example scenario described in Sections 2.7 and 2.7.1. 

 To recap, the issue under consideration is determining confidence intervals for drug 

efficacy. It is important to determine the ideal dosage required for an antibiotic to achieve a 

curative blood concentration with a chosen level of reliability. The dosage (perhaps expressed in 

milligrams) serves as the explanatory variable. In the determination of dosage-mortality curves, 

the natural logarithm of the dosage is sometimes used. Sensitivity tests are conducted at a set of 

discrete dosage levels in order to calibrate a normal distribution function for the drug’s success. A 

fairly common practice is to estimate the drug dosage that will cure 99% of the test subjects. 
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Accordingly, dosage confidence intervals may be computed for a confidence coefficient of 95%. 

Starting with the theory presented in the preceding section, we can construct this interval. 

 Upon revisiting equations (2.7.1.12) and (2.7.1.13) for Model 1 or (2.7.1.16) and (2.7.1.17) 

for Model 2, note the presence of the term p̂ , an estimate of the exact success probability. Based 

upon our fit to the normal distribution, endpoint probabilities pLow and pHigh  can be mapped onto 

corresponding arguments Lowt  and Hight  for the standard normal distribution ( )1,0N , i.e., 
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The arguments Lowt  and Hight  are functions of the endpoint probabilities and can be extracted from 

(2.7.2.1) and (2.7.2.2) via numerical solution procedures. The associated probits are related to the 

dosage interval endpoints Lowx  and Highx  through the equations 

                                              
σ

µ−
= Low

Low
xt ;     

σ
µ−

= High
High

x
t                                      (2.7.2.3) 

where µ and σ are the maximum likelihood estimates for the mean and standard deviation obtained 

by the techniques described in Section 2.4. On the other hand, if a linear fitting form is used as in 

Section 2.3, the following forms are applied in lieu of (2.7.2.3). 

                                              LowLow xbat += ;     HighHigh xbat +=                                    (2.7.2.4) 

The values Lowt  and Hight  are implicit functions of their corresponding probabilities. In fact, within 

the context of archived literature, this function is denoted as the “Probit”. Therefore, (2.7.2.1) can 
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be expressed as 

                                                           ( )LowLow pt Probit=                                                 (2.7.2.5) 

A similar formula may easily be written for tHigh. 

 

2.7.3 Confidence Analysis for the Mean and Standard Deviation 

 The content of this section constitutes an upgrade to the corresponding sections in the 

predecessor of this report.[16] The analysis shown here is a modified version of the derivations 

presented in the DiDonato’s excellent report.[17] As is true for the maximum likelihood analyses 

described above, the crux of the probit fit resides in the interplay between the binomial distribution 

(a discrete probability model) and the normal distribution (a continuous probability model). For 

this reason, when expected values are computed for the log-likelihood function, expectation 

operators must be applied for both the discrete and continuous distributions. To assess the level of 

confidence in the mean and standard deviation, begin with the binomial distribution, i.e., 
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where n = 0,1,…,n. Recall that probability ( )σµ,;xp  is given by the normal distribution with q = 

1 – p; note that x is the explanatory variable for the normal probabilities. The explanatory variable 

is not an active participant in this analysis. Define the functions G and H as follows. 
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At this point, it is desirable to take the expected values of G and H. Begin by treating f as a 

continuous function of s; although s takes on discrete values, we can regard s in the sense of a 

distribution. Hence, 
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where Ed represents the discrete expectation. Substituting for G, 
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The natural logarithm has special properties under differentiation, i.e., 
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Clearly, we have that 
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Consider the integrand and perform the differentiation. 
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By differentiating the probabilities, noting pq −= 1  and collecting terms, we obtain 

                                           ( )[ ]
µµ ∂
∂

−−







=

∂
∂ −−− ppsqsnqp

s
nf

i
ssnii i 11                                (2.7.3.10) 

                               ( ) ( )[ ]
µµ ∂
∂

−−







=








∂
∂ −−− ppsEqsnEqp

s
nfE dd

sEsnE
d

dd 1][1][                  (2.7.3.11) 



 
Distribution A 

39 

By nature of the binomial distribution, both ( )sn −  and S are discrete random variables. Moreover, 

                                                  ( ) pnsnE id =−  ;   ( ) qnsE id =                                       (2.7.3.12) 

Substitution in (2.7.3.10) yields 
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By backing these results into (2.7.3.7), we can conclude that 

                                                                    ( ) 0=iGE                                                       (2.7.3.14) 

It is also necessary to determine the expected value of Hi, this calculation is easily accomplished 

because the only difference is that the derivative of fi  is taken with respect to σ  instead of µ . 

The process is the same, and the result corresponding to (2.7.3.14) is 
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Hence, 

                                                                   ( ) 0=iHE                                                       (2.7.3.16) 

 Mirroring the maximum likelihood analysis, we the variances for iG  and iH , then the 

covariance of  iG  and iH . Begin with the variance of Gi, i.e., 

                                                                 2)(Var
iGiG σ=                                                   (2.7.3.17) 

By definition with the use of (2.7.3.14), 

                                                  ( ) ( )( ) ( )2222
iiiG GEGEGE

i
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                                                ( ) ( ) ( )dssfsGGE i
s

ii σµσµ ,;,;22 ∫=                                     (2.7.3.19) 

Substituting for G and then evaluating the derivative of the logarithm, 
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Thus, the initial result is 
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Now consider the partial derivative with respect to µ of ( )iGE , i.e., 
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Recall (2.7.3.14) and interchange the order of differentiation and integration; note that the domain 

of integration is finite, and the differentiation is with respect to a parameter not the variable of 

integration. 
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By applying the product rule, 
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Using (2.7.3.2) to substitute for Gi, 
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Rearrangement along with the properties of the logarithm yields 
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Upon substitution into (2.7.3.22) we learn that 
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By definition of the expectation, 
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 The variance of Hi is computed via a similar analysis; the only real change is that we 

differentiate with respect to σ instead of µ. Therefore, 
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It is also necessary to determine a form for the covariance of Gi and Hi. This expression is 

derived as follows. 
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As before, the properties of the natural logarithm are applied. 
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Recall (2.7.3.2) and differentiate it with respect to σ, i.e., 

                                                        ( ) ( )dssfGGE i
s
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Using (2.7.3.14) and interchanging the order of integration and differentiation, 
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By applying the product rule, 
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Substituting for Gi, we obtain 
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Again, the logarithm’s properties are applied to obtain 
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Hence, 
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Substituting this result into (2.7.3.32), we conclude that 
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having used the definition of the expectation. Equation (2.7.3.32) demonstrates that this covariance 

is completely symmetric, i.e., 

                                           ( ) ( )iiGHHGii GHHG
iiii

,Cov,Cov === σσ                            (2.7.3.40) 

 This development is quite lengthy, but at this point, we can begin to roll up the results 

shown above into a form pointed toward a confidence assessment. Recall (2.7.3.1), the ith factor 

of the likelihood function; it follows that the entire likelihood function is written as 

                                                             ( )σµ,;
1

sfF
N

i
i∏

=

=                                                (2.7.3.41) 

Recall that the index i ranges over the N levels taken on by the explanatory variable. Accordingly, 

the log-likelihood function is expressed as 
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Equation (2.7.3.42) is an important result because, via the properties of the logarithm, the product 

of probabilities in the likelihood function has been transformed into a sum of N log-likelihood 

factors. Using (2.7.3.2) and (2.7.3.3), partial derivatives (taken with respect to the fitting 

parameters) of the log-likelihood function can be written as 
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These derivatives can be organized in the form of a vector 
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For large sample sizes, that being defined by the in used at each level of the explanatory variable, 

the vector (2.7.3.45) is distributed in multinormal distribution ( )1,0 −AN


 where 
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1−A  is denoted as the covariance matrix.[17] Using this information, the departure of the 

parameter estimates from their true values can be expressed in the form of a Taylor cast in two 

variables, i.e., 
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These expressions are presented as equalities in deference to the standard form for the Taylor 

series. Instead of expanding the second order partial derivatives around the point ( )00 ,σµ , they 

are centered at two points ( )11,σµ  and ( )22 ,σµ  that lie along the line segment between ( )σµ ,  and  

( )00 ,σµ . Although these points are not known a priori, they both converge to ( )σµ ,  with 

probability one. Moreover, the elements of (2.7.3.46) converge to the expected values with 

probability one.[17] At  ( )σµ , , the first order partial derivatives vanish, so (2.7.3.47) and 

(2.7.3.48) are rewritten as 
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 Finally, at this point of the development, we can address the level of confidence in the 

estimates µ and σ . To do so, it is instructive to write the linear system (2.7.3.49) and (2.7.3.50) 

in matrix-vector form. Define vectors as shown below: 

                                            







−
−

=
0

0

σσ
µµ

θ


;       
( )

( )


















∂
∂
∂
∂

=

00

00

,

,

σµ
σ

σµ
µλ
L

L


                                  (2.7.3.51) 

The (2.7.3.49) and (2.7.3.50) can be written as 

                                                                    θλ


•= −1A                                                     (2.7.3.52) 

or 

                                                                      λθ
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•= A                                                     (2.7.3.53) 
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The vector θ


 has an approximate bivariate multinormal distribution, that is ( )AN ,0 . The matrix 

A is denoted as the asymptotic variance/covariance matrix. To fix a level of confidence to the 

estimate ( )σµ , , consider the quadratic form 

                                                               θθ


••= −1AQ T                                                 (2.7.3.54) 

For a vector X


with distribution ( )VvN , ; the associated joint density function ( )Xf  has the general 

form 
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This density function has a 2χ  (Chi-squared) distribution with m degrees of freedom where m is 

the number of components in the random vector X. [14] For our specific concern (2.7.3.54), there 

are two degrees of freedom: (µ ,σ ) for the Golub-Grubbs model and ( )βα ,  for the Garwood 

model. For the former model with Q provided by the 2χ  distribution, (2.7.3.54) can be expanded 

to obtain 

                                 ( ) ( )( ) ( ) 2
1

22 2 γσσµσµµ χσσσσµµµµ −=−+−−+− AAA                (2.7.3.56)  

In this equation, the calculation is centered at the parameter pair estimate ( )σµ , , and so are the 

matrix elements µµA , µσA  and σσA . The locus defining the boundary for the confidence 

assessment is given by the ordered pairs ( )σµ, , a continuum. The position of this locus is 

controlled by the term on the right hand side, the tail of the 2χ  distribution for confidence level 

.γ  The 2χ  term is given by 
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Hence, 

                                                   ( )( )γχχ γ −≤−−=− 1Pr1ln2 22
1                                        (2.7.3.58) 

As an illustration, for a confidence level of 95.0=γ , 05.01 =− γ , the value of 2
1 γχ −  is ~0.1025. If 

one cares to apply some analytic geometry, (2.7.3.56) can be shown to be an ellipse in the plane. 

The ellipse can be rotated into a standard position, and the lengths of its semi-major and semi-

minor axes can be calculated. Doing so is all well and good, and it is even instructive, but it adds 

complication through the rotation. Instead, we can simply solve the quadratic equation for one 

parameter of the other. If we solve for σ , we obtain 
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To plot this ellipse, we must determine the domain of the independent variable µ . To do so, the 

argument of the radical must be non-negative, i.e., 
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The endpoints of the interval for µ  are determined by solving (2.7.3.60) for the equality. These 

endpoints are: 
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Therefore, [ ]maxmin ,µµµ ∈ . Within this domain, (2.7.3.59) defines two branches of the ellipse in 

σ  that are easily plotted so long as the radical is made to vanish at the endpoints. Note that floating 

point arithmetic tends to create extremely tiny negative numbers under the radical. The argument 

must be set to zero in these cases. 

 After the pages and pages of mathematics required to reach this point in our development, 

it is of great importance to interpret the meaning of this confidence assessment. The confidence 

ellipse exists in the parameters plane whereas the confidence interval consists of only 2 discrete 

points. DiDonato [17] claims that the true parameter pair lies within the ellipse with a probability 

of γ . This claim lies in disagreement with the frequentist interpretation of probability. At the 

conclusion of a single experiment consisting of n levels in an explanatory variable, a single 

parameter pair is calculated; then the elliptical locus is calculated. These calculations are entirely 

deterministic; there is nothing random about them. The only way that randomness is restored is 

through repeated experiments. That is to say, the entire experiment must be repeated say, M times. 

Each repeat of the experiment, becomes a separate realization of the experiment. Moreover, each 

repeat of the experiment may use different levels and number of levels; it may also use different 

numbers of trials at each level. In this sense, randomness is restored to the ensemble of experiments 

and to the locus of points constituting the confidence ellipse. With this interpretation, if 10 

experiments are performed with the subsequent calculation of 90% confidence ellipses, then 9 of 

the 10 ellipses will contain the true parameter pair. For any of the individual experiments, then the 

probability that the experiment’s confidence ellipse contains the true parameter pair is either one 

or zero. Taken by itself, the single experiment’s ellipse only provides the analyst with a sense of 

the extent of scatter in the parameter pair. Scheffe [17] echoes this interpretation while also citing 
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the former claim, but that latter interpretation is rigorous from frequentist theory and is adhered to 

in this report. 

 

2.8 Measures of Variance 

In this section, we address measures of variance associated with our fitting procedure. As 

it happens, estimates of the mean µ and standard deviation σ for the probability distribution, have 

their own variances Var(μ) and Var(σ). Also, we can imagine that μ and σ vary in a correlated 

manner in the probability distribution. This eventuality implies that the covariance of µ and σ may 

be non-zero. As it happens, these estimated variance values are given as entries in varA , the 

asymptotic variance-covariance matrix, the inverse of the information matrix. The information 

matrix infoA  is given by 
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The asymptotic variance-covariance matrix is the inverse of the information matrix, i.e.,   
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The second partial derivatives are calculated during the estimation procedure, as in Section 2.6. It 

is easy to compute their expected values by using properties of the binomial probability 

distribution. The elements of the asymptotic variance-covariance matrix are interpreted as follows. 
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This matrix contains the desired variance estimates for the parameters produced the fitting 

procedure. 

On the other hand, suppose that the linear fitting form is used as in Section 2.3, i.e., 

                                                                     xt βα +=                                                          (2.8.4) 

The information matrix elements cast in terms of α and β can, by transformation, be expressed in 

terms of µ and σ. The information matrix expressed in terms of α and β is written as 
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Recall that the transformation (2.3.2) has the general form 

                                                    ( )σµαα ,= ;     ( )σµββ ,=                                                (2.8.6) 

By using the chain rule for partial differentiation, we observe that 

                                                         
βµ

β
αµ

α
µ ∂

∂
∂
∂

+
∂
∂

∂
∂

=
∂
∂

                                                (2.8.7) 

                                                         
βσ

β
ασ

α
σ ∂

∂
∂
∂

+
∂
∂

∂
∂

=
∂
∂

                                                 (2.8.8) 

It is a tedious mathematical exercise, but the repeated application of (2.8.7) and (2.8.8) leads to 
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Equations (2.8.9) through (2.8.11) are the elements of Ainfo , and they are easily computed with the 

use of the following coordinate transformation derivatives. 
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Equations (2.8.9) through (2.8.14) provide the required information matrix entries needed in order 

to compute the asymptotic variance-covariance matrix. For purposes of calculation, (2.8.9) through 

(2.8.11) can be simplified by noting that α∂∂ /L  and β∂∂ /L  are zero at the point of maximum 

likelihood. 

 

2.9 Logit Fitting Procedure 

 The probit analysis discussed earlier in this report is based upon the normal distribution. In 

some cases, it is desirable to use a distribution that performs a bit differently in the tail region. The 
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logistic distribution is often applied for linear fitting. This distribution is computed as the natural 

logarithm of the odds ratio, i.e., 

                                                    ( ) x
p

p βα +=







−

=
1

lnplogit                                             (2.9.1) 

In this formula, p is the success probability, so the odds ratio is clearly present. The explanatory 

variable is x while α and β are the unknown parameters. Rearrangement of (2.9.1) allows 

calculation of the probability; specifically, 
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+
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exp,;                                               (2.9.2) 

Note, unlike the probit method, the computation of this probability does not require the use of 

numerical quadrature. The probability density function is calculated by differentiating (2.9.2) with 

respect to x. Hence, 
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To elucidate some of the properties of this distribution, we can substitute xt βα −−= then rewrite 

(2.9.2) as 

                                                                t
p

p
−=








−1

ln                                                         (2.9.4) 

                                                             ( ) ( )t
ttp
−+

−
=

exp1
)(exp

                                                    (2.9.5) 

The complementary probability is 
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For application of this distribution, t  can be substituted for t− . However, for the proof below, 

(2.9.5) must be left unaltered. The expected value for this distribution is zero, i.e., ( ) 0=tE . This 

property is shown by following [18]. By definition, 
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This integral can be rewritten as follows. 
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In the leftmost integral, make the substitution yt −= . 
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By expanding the quadratic term, we obtain 
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If we multiply the integrand of the left integral by ( ) ( )yy −− exp/exp  and the integrand of the 

right integral by ( ) ( )tt exp/exp , we have that 
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Since z is a dummy variable of integration, these two integrals are of the same magnitude but 

opposite sign; thus, 

                                                                      ( ) 0=tE                                                           (2.9.12) 

For the linear form shown in (2.9.1), (2.9.11) implies that 

                                                              ( )
β
αβα −=+ xE                                                    (2.9.13) 
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The variance for this distribution can also be calculated. By definition, and with the use of (2.9.12), 

                                                   ( ) ( ) ( )( ) ( )222Var tEtEtEt =−=                                         (2.9.14) 

This expectation may be evaluated in the same manner. Observe that 
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Again, the substitution yt −=  is employed in the integral over negative t, i.e., 
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Simplification shows that 
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This integral is the same as the remaining integral over positive t in (2.9.15), so 
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To evaluate this integral, let ( )ty −= exp , with this substitution the integrand in (2.9.18) becomes 
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The series expansion appearing in (2.9.18) is derived by applying polynomial division to 

2)1/(1 y+  and then multiplying by the z remaining in the numerator. Therefore, 
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Substituting this result into (2.9.17), 
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Integration by parts can be used to evaluate the integral in (2.9.20), i.e., 
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With this result, we learn that 

                                             ( ) ( ) ( )∑∑
∞

=

−∞

=

− −
=






−=

1
2

1

3
1

12 14212
n

n

n

n

nn
ntE                                 (2.9.23) 

The convergent series in (2.9.22) evaluates to a value of 12/2π , so 
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If we return this result to the original logistic form (2.9.3), we see that 
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Equations (2.9.12) and (2.9.24) convey basic properties of the logistic distribution. It can be 

employed for analyzing sensitivity test data. The likelihood equation, applied again, is 
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so the log-likelihood function is 
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The log-likelihood function is maximized by computing the derivatives 
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For this application, the success probability has the form 
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For readers who have read through previous discussions in this report, the terms in the two 

equations above will appear very familiar, and indeed, they are. For ii xt βα += , we can use the 

derivatives provided in Section 3. It is particularly important to note that iii zdtdp =/ , i.e., 
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With these derivatives in mind, (2.9.27) and (2.9.28) are rewritten as 
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The attendant second partial derivatives are expressed as 
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The prime ʹ notation represents the ordinary derivative idtd / . The derivatives of ratios occurring 

above are 
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Equations (2.9.32) through (2.9.38) may be used in a Newton iterative scheme as described in 

Section 2.5. 

 The logit procedure (as described above and upon convergence) renders an estimate of the 

parameters α  and β . Naturally, questions arise as to the certainty of these estimates. Given that 

the framework for the success probability still resides in the binomial distribution, the concept of 

the confidence interval for the success probability is retained here altered only by the application 

of the logistic probability formulas provided above.[4] As in the case of the probit model (based 

on the normal distribution), it is desirable to obtain a bivariate confidence relationship between  α  

and β . Given that the logit method utilizes the same mathematical underpinnings, i.e., the 

information and asymptotic variance/covariance matrices, one might suspect that the same 

methodology leading to the computation of the confidence ellipse can be applied. It is a promising 

idea indeed, but a troublesome question arises. The theoretical development described in Section 

2.7.3 is based not only on the normal distribution but, more importantly, on its connection to the 

chi-squared distribution that governs the uncertainty in parameters µ  and σ  via a special 

quadratic form.[14] This quadratic form involves both the information matrix and the parameter 

increments. The logistic distribution differs from the normal distribution, so the connection to the 

chi-squared distribution is not immediately evident. Fortunately, research has shown that the 

logistic distribution correlates well enough with the normal distribution to assert that the 

uncertainty for the bivariate parameters is distributed chi-squared.[19,20]. For this reason, 

confidence ellipses can be calculated for logit parameter estimates in the same way as for probit 

estimates. 
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3 TEST PROBLEMS AND RESULTS 

In the preceding sections, some of the probability theory supporting the analysis of 

sensitivity test data has been described. The mathematics employed is quite complicated and much 

time is required in order to gain a working level of knowledge in this discipline. Mired in theory, 

it is easy to lose touch with the practical aspects of the calculations. For this reason, this chapter 

of the report presents the setup and documents the results associated with a series of basic test 

problems. To enhance understanding and permit brevity, we have selected problems from 

Garwood [11], Dixon/Mood [6] and Collett [4]. These problems are useful in testing the algorithms 

discussed above in Chapter 2. In and of themselves, these problem sets constitute a reasonable 

practicum for didactic purposes, but they do not address all of the potential scenarios for sensitivity 

testing. That noble goal remains on the horizon, but perhaps it can now be glimpsed in clearer 

focus. 

3.1 Test Problem 1: Antibiotic Efficacy 

This example addresses a series of serum testing trials associated with an anti-pneumonia 

drug. Selected doses of the drug are administered to groups of mice. The data is presented as a 

series of five binomial trials, but the data can also be represented in terms of a sequence of binary 

trials (each treated mouse constitutes a binary trial at a particular dosage level). The data is 

provided in Table 1, and the drug dosage is measured in cubic centimeters.[11] Each individual 

dosage XD is administered to 40 mice, and after being infected with pneumonia, the number of  

Table 3 Anti-Pneumonococcus Serum Test Data  

Dosage (XD , cc) DX~  Successes out of 40 
0.000625 -2 33 
0.00125 -1 22 
0.0025  0 8 
0.005  1 5 
0.01  2 2 
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Figure 2  Normal Curve Linear Fit Form for Test Problem 1 

expired mice is counted and recorded (an expired mouse is denoted as a success in this context). 

In this case, it is advantageous to transform the dosage levels via the natural logarithm. The dosage 

levels shown in Table 3 are cleverly selected to promote logarithmic mapping. Let ( )DD XX lnˆ = ; 

then the transformed dosages may be written as 

                                                             5,,2,)ln()2ln()1(ˆ 1 =+−= nXnX D
n
D                                     (3.1.1) 

Garwood [11] applies a final transformation to the data in order to center the distribution at 

.0~ =DX  If there are an odd number n of data (as in this case), then let m be the natural number 

with 12 += mn . The distribution is centered on the discrete interval [ ]mm,−  with the 

transformation 
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Figure 3  Probability Distributions for Test Problem 1 

To perform the fitting procedure, Garwood’s implementation of the method of maximum 

likelihood  (Section 2.3) is employed with the linear form xβα +  and the normal distribution. To 

start the iterative procedure, the initial estimates for α and β are 

                                                                 1;2 == βα                                                        (3.1.3) 

The iterative scheme converges quickly to the final values of  

                                                   676081.0;554428.0 == βα                                            (3.1.4) 

These values agree extremely well with the archived estimates in Garwood. The linear fit for this 

test problem is shown in Figure 2, and the probability density and cumulative distribution functions 

are shown in Figure 3. In accordance with the binomial model (Model 1), the 95% confidence 

interval endpoints in terms of the logarithmic dosage for probability estimates are provided in 

Table 4. Confidence interval (95%) endpoints computed using Model 2, the standard error method, 

are provided in Table 5. Also, the 95% confidence ellipse for the parameter estimates for α  and  
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Table 4  95% Confidence Interval Endpoints (Model 1) for Test Problem 1 

Left Endpoint 
( )DXln  

Probability 
Estimate 

Right Endpoint 
( )DXln  

-8.520631 0.100000 -7.612530 
-7.607901 0.200000 -7.201041 
-7.266414 0.300000 -6.889720 
-6.979877 0.400000 -6.616004 
-6.715589 0.500000 -6.354047 
-6.454251 0.600000 -6.085607 
-6.177621 0.700000 -5.789374 
-5.857550 0.800000 -5.424880 
-5.419810 0.900000 -4.850462 

 

Table 5  95% Confidence Interval Endpoints (Model 2) for Test Problem 1 

Left Endpoint 
( )DXln  

Probability 
Estimate 

Right Endpoint 
( )DXln  

-8.167631 0.100000 -7.660243 
-7.646688 0.200000 -7.233966 
-7.295645 0.300000 -6.917792 
-7.004956 0.400000 -6.642483 
-6.738876 0.500000 -6.380899 
-6.477293 0.600000 -6.114819 
-6.201983 0.700000 -5.824130 
-5.885810 0.800000 -5.473088 
-5.120757 0.900000 -4.449925 

 

 

Figure 4  95% Confidence Ellipse for Parameter Estimates α and β in Test Problem 1 
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β  is included as Figure 4. Variances have also been computed for the estimated mean and standard 

deviation. It is to realize that these parameters are calculated for the transformed explanatory 

variable, [ ]2,2~ −∈DX . The estimated mean and standard deviation are computed as -0.820 and 

1.479, respectively. On the same axis, their standard deviations are respectively estimated to be 

6.367 and 5.416. 
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3.2 Test Problem 2: Morbidity of Salmonella Typhimurium 

 This test problem examines the morbidity of the bacterium Salmonella Typhimurium when 

administered to laboratory mice. A reagent containing a fraction of the toxic bacteria was prepared 

and administered to seven groups of mice.[21] Each group consisted of five mice. In this case, the 

number of survivors is reported for each group in Table 6.  

Table 6  Salmonella Typhimurium Morbidity Test Data 

Dosage (mg) DX~  Successes out of 5 
0.0625 -3 4 
0.125 -2 3 
0.25 -1 2 
0.5  0 0 
1.0  1 0 
2.0  2 0 
4.0  3 0 

 

The calculations entail performing a fit to the normal curve via a linear argument ( ).xβα +  

Again, Garwood’s method is employed as in Section 2.3. From a casual inspection of Table 6, it 

is evident that the dosage values, after natural logarithmic transformation, conform to equation 

(3.1.1). The transformed dosage locus DX~  is them obtained through the use of (3.1.2) with m set 

to three. As for the previous test problem, the starting values for α  and β  are kept the same as in 

equation (3.1.3). Garwood’s algorithm converges to the final values below. 

                                                     86344.0;51676.1 == βα                                              (3.2.1) 

As in the previous case, the value of α  has not been adjusted by the addition of five probits. The 

addition used for classical analyses, does not alter the results. The results shown here agree with 

the archived estimates with excellent accuracy. The linear fit for this test problem is presented in 

Figure 5 and is compared against the empirical data. The attendant probability density (PDF) and 
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Figure 5  Normal Curve Linear Fit Form for Test Problem 2 

 

Figure 6  Probability Distributions for Test Problem 2 

cumulative distribution (CDF) functions are presented in Figure 6. The endpoints of the probability 

95% confidence interval for this test problem are provided in Table 7 for Confidence Model 1. 

Similar information is provided in Table 8 for Model 2, the standard error model. Again both of 

these intervals are calculated for the 95% confidence level. The notation --- indicates that the 

predicted endpoint falls out of the domain. Finally, the 95% confidence ellipse computed for  
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Table 7  95% Confidence Interval Endpoints (Model 1) for Test Problem 2 

Left Endpoint 
( )DXln  

Probability 
Estimate 

Right Endpoint 
( )DXln  

-3.303797 0.100000 -2.406570 
-2.889236 0.200000 -2.117651 
-2.605373 0.300000 -1.877926 
-2.370206 0.400000 -1.652407 
-2.155195 0.500000 -1.420311 
-1.943868 0.600000 -1.156728 
-1.720968 0.700000 -0.802384 
-1.463119 0.800000  0.442143 
-1.107982 0.900000 --- 

 

Table 8  95% Confidence Interval Endpoints (Model 2) for Test Problem 2 

Left Endpoint 
( )DXln  

Probability 
Estimate 

Right Endpoint 
( )DXln  

-4.506577 0.100000 -2.588143 
-3.110754 0.200000 -2.258334 
-2.749067 0.300000 -2.007947 
-2.483716 0.400000 -1.784878 
-2.254286 0.500000 -1.567229 
-2.036637 0.600000 -1.337799 
-1.813568 0.700000 -1.072448 
-1.563181 0.800000 -0.710761 
-1.233372 0.900000  0.685063 

 

 

Figure 7  95% Confidence Ellipse for Parameter Estimates α and β in Test Problem 2 
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estimates α and β is shown in Figure 7. The mean and standard deviation for the fitted distribution 

are calculated as -1.756 and 1.158, respectively, while the corresponding standard deviations for 

these estimates are 2.675 and 2.583. Again, these values are computed for the fully transformed 

explanatory variable [ ]3,3~ −∈DX .  
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3.3 Test Problem 3: Arsenic Toxicity 

The second test problem examines the susceptibility of brine shrimp to arsenic in liquid 

solution.[22] As the concentration of arsenic is increased through a geometric progression, we 

expect fewer shrimp to survive. The data for this test series is provided in Table 9. The true 

concentrations for arsenic are not provided, so the uniform values DX~  are used as listed. 

Table 9  Arsenic Toxicity Test Data 

Solution DX~  Successes 
C -3 8 
D -2 8 
E -1 6 
F  0 5 
G  1 5 
H  2 1 
I  3 0 

 

 

Figure 8  Normal Curve Linear Fit Form for Test Problem 3 

In this case, a response is defined as a brine shrimp surviving immersion in the solution. 

Our starting guess for the estimation routine is given by (3.2.1), the same values as used in the 

preceding test problem. The converged parameter estimates are 
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                                                  712834.0;434165.0 =−= βα                                          (3.3.1) 

These values constitute an excellent match for the archived estimates, and the final linear fit is 

shown in Figure 8. Since no actual values are specified for the solution concentrations, the same 

dosage levels occurring in the preceding test problem are used here. Probability density and  

 

Figure 9  Probability Distributions for Test Problem 3 

 

Table 10  95% Confidence Interval Endpoints (Model 1) for Test Problem 3 

Left Endpoint 
DX~  

Probability 
Estimate 

Right Endpoint 
DX~  

-1.884088 0.100000 -1.021735 
-1.393996 0.200000 -0.660039 
-1.056911 0.300000 -0.370771 
-0.776747 0.400000 -0.106607 
-0.520028 0.500000 0.155914 
-0.267356 0.600000 0.438264 
-0.000706 0.700000 0.775710 
 0.307552 0.800000 1.279043 
 0.730878 0.900000 --- 

 

cumulative distribution functions are easily calculated for this problem; these plots are shown in 

Figure 9. On comparing the parameter estimates to the corresponding values in Garwood, one may 
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Table 11  95% Confidence Interval Endpoints (Model 2) for Test Problem 3 

Left Endpoint 
DX~  

Probability 
Estimate 

Right Endpoint 
DX~  

-2.240194 0.100000 -1.166359 
-1.544010 0.200000 -0.767613 
-1.161147 0.300000 -0.467232 
-0.861901 0.400000 -0.201910 
-0.596125 0.500000  0.054181 
-0.340034 0.600000  0.319958 
-0.074711 0.700000  0.619203 
 0.225669 0.800000  1.002066 
 0.624415 0.900000  1.698250 

 

 

Figure 10  95% Confidence Ellipse for Parameter Estimates α and β in Test Problem 3 

 

note that the probit quantity of 5 has not been added to the estimate of α shown in (3.3.1).[11] 

With this adjustment to α , the agreement is excellent. In accordance with Confidence Model 1, 

success probability confidence intervals are provided in Table 10. Corresponding confidence 

intervals computed by using Model 2 are shown in Table 11. The 95% confidence ellipse for the  

estimates of α and β is presented in Figure 10. The mean and standard deviation for this distribution 

are 0.609 and 1.402, respectively. These parameters are computed on DX~  the transformed 
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explanatory variable axis along with their respective standard deviation estimates of 3.159 and 

3.221. 
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3.4 Test Problem 4: Dixon/Mood Bruceton First Test Series 

 The focus of this test problem is a Bruceton or Up and Down test. As described earlier, the 

test consists of a set of Bernoulli trials; each trials has either a pass or fail outcome. This problem 

is taken from Dixon and Mood and is comprised of 60 trials conducted over five (dosage) levels 

in the explanatory variable. The test data can be formulated in terms of five Binomial trials. The 

data in this form is provided in Table 12. 

Table 12  Bruceton Test Data for Test Problem 4 

 Dosage Level Number of Trials Successes 
2.0  1 1 
1.7 10 10 
1.4 27 18 
1.1 20 2 
0.8  2 0 

 

For this test problem, the algorithm described in Section 2.6 is employed to estimate the mean and 

standard deviation for the normal probability distribution. Initial values for the mean µ  and 

standard deviation σ  are set as follows: 

                                                           18.04.1 00 == σµ                                                    (3.4.1) 

 

Figure 11  Probability Distributions for Test Problem 4 
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The iterative scheme is convergent rendering the final estimates 

                                                       1667.0;3216.1 == σµ                                                (3.4.2) 

With these values in mind, the probability distributions for this test problem are shown in Figure 

11. 95% confidence intervals for the success probability according to Confidence Model 1 are 

documented in Table 13. Similar information for Confidence Model 2 is contained in Table 14. 

The confidence ellipse for parameters µ  and σ  is shown in Figure 12. The standard deviations 

Table 13  95% Confidence Interval Endpoints (Model 1) for Test Problem 4 

Left Endpoint 
DX  

Probability 
Estimate 

Right Endpoint 
DX  

1.0467469 0.100000 1.1897100 
1.1305151 0.200000 1.2520503 
1.1881752 0.300000 1.3016885 
1.2361231 0.400000 1.3468707 
1.2800741 0.500000 1.3916125 
1.3233422 0.600000 1.4394931 
1.3690090 0.700000 1.4961876 
1.4217988 0.800000 1.5784431 
1.4942660 0.900000 --- 

 

Table 14 95% Confidence Interval Endpoints (Model 2) for Test Problem 4 

Left Endpoint 
DX  

Probability 
Estimate 

Right Endpoint 
DX  

0.9921593 0.100000 1.1663933 
1.1067824 0.200000 1.2347979 
1.1715661 0.300000 1.2862759 
1.2225015 0.400000 1.3316982 
1.2678664 0.500000 1.3754852 
1.3116534 0.600000 1.4208501 
1.3570757 0.700000 1.4717855 
1.4085537 0.800000 1.5365692 
1.4769583 0.900000 1.6511923 
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Figure 12  95% Confidence Ellipse for Parameter Estimates µ and σ in Test Problem 4 

 

for µ and σ are computed from the asymptotic variance-covariance as 0.1664 and 0.1505, 

respectively. 
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3.5 Test Problem 5: Dixon/Mood Bruceton Second Test Series 

 This section of the report discusses the second Mood/Dixon Bruceton test problem. As for 

the preceding case, this test entails 60 trials taken over four levels of the explanatory variable. The 

test data, compiled as a series of four binomial trials, is provided in Table 15. 

Table 15  Bruceton Test Data for Test Problem 5 

Dosage Level Number of Trials Successes 
1.9  3   3 
1.5 29 27 
1.9 27  1 
0.1   1  0 

 

 

Figure 13  Probability Distributions for Test Problem 5 

 

The initial estimates for µ and σ are the same as in (3.4.1). The iterative scheme converges to the 

final values of 

                                                     18347.0;22775.1 == σµ                                              (3.5.1) 

Accordingly the probability density and cumulative distribution functions for the normal 

distribution fit to the data is shown in Figure 13. Confidence intervals for the success probability 

are listed in Table 16 for Confidence Model 1 and in Table 17 for Confidence Model 2. The  
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Table 16  95% Confidence Interval Endpoints (Model 1) for Test Problem 5 

Left Endpoint 
DX  

Probability 
Estimate 

Right Endpoint 
DX  

0.9252993 0.100000 1.0825744 
1.0174535 0.200000 1.1511556 
1.0808859 0.300000 1.2057630 
1.1336339 0.400000 1.2554684 
1.1819848 0.500000 1.3046893 
1.2295845 0.600000 1.3573632 
1.2798229 0.700000 1.4197333 
1.3378975 0.800000 1.5102234 
1.4176194 0.900000 --- 

 

Table 17  95% Confidence Interval Endpoints (Model 2) for Test Problem 5 

Left Endpoint 
DX  

Probability 
Estimate 

Right Endpoint 
DX  

0.8652470 0.100000 1.0569234 
0.9913450 0.200000 1.1321760 
1.0626141 0.300000 1.1888074 
1.1186486 0.400000 1.2387769 
1.1685550 0.500000 1.2869475 
1.2167255 0.600000 1.3368538 
1.2666950 0.700000 1.3928884 
1.3233265 0.800000 1.4641575 
1.3985790 0.900000 1.5902555 

 

 

Figure 14  95% Confidence Ellipse Computed for Parameter Estimates µ and σ in Test Problem 5 
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confidence ellipse for the estimated values of µ and σ is shown in Figure 14. Standard deviation 

approximations have been calculated for the estimated µ and σ. Respectively, these values are 

0.27238 and 0.16754. 
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3.6 Test Problem 6: Anti-Pneumococcus Serum 

 In the structure of this report, this test problem is new. This report’s predecessor [16] did 

not discuss the logistic probability distribution. Yet, this statistical distribution is widely applied, 

so it has be included in this revised report. This test problem is taken from Collett [4] and represents 

a means of testing antibiotic dosage efficacy. In this clinical test series, five antibiotic dosage levels 

are selected. For each level, 40 mice are infected with pneumococcal bacterial and then injected 

with the dosage for the level. Then the number of mice that do not survive after a seven days 

waiting period at that level are recorded. The binomial data for this test series is presented in Table 

18. A success in this case is interpreted as a non-survivor. The logistic distribution is used to fit 

 

Table 18  Logistic Test Data for Test Problem 6 

Dosage Level Number of Trials Successes 
0.0028 40 35 
0.0056 40 21 
0.0112 40   9 
0.0225 40   6 
0.0450 40   1 

 

 

Figure 15  Linear Logistics Fit Form for Test Problem 6 
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Figure 16  Probability Distributions for Test Problem 6 

 

Table 19  95% Confidence Interval Endpoints (Model 1) for Test Problem 6 

Left Endpoint 
)ln( DX  

Probability 
Estimate 

Right Endpoint 
)ln( DX  

-3.4005 0.100000 -4.3251 
-3.9572 0.200000 -4.6660 
-4.2990 0.300000 -4.9281 
-4.5654 0.400000 -5.1651 
-4.8004 0.500000 -5.4031 
-5.0276 0.600000 -5.6671 
-5.2675 0.700000 -6.0009 
-5.5514 0.800000 -6.5509 
-5.9659 0.900000 --- 

 

this data with the natural logarithm of the dosage as an explanatory variable. Moreover, the linear 

fitting form (2.9.1) is employed. At the start of the iterative scheme, the following values are 

assumed for α and β.  

                                                        83.1;19.9 00 −=−= βα                                               (3.6.1) 
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Table 20  95% Confidence Interval Endpoints (Model 2) for Test Problem 6 

Left Endpoint 
)ln( DX  

Probability 
Estimate 

Right Endpoint 
)ln( DX  

-2.9558 0.100000 -4.1853 
-3.7993 0.200000 -4.5689 
-4.1985 0.300000 -4.8433 
-4.4875 0.400000 -5.0815 
-4.7328 0.500000 -5.3123 
-4.9637 0.600000 -5.5576 
-5.2019 0.700000 -5.8466 
-5.4763 0.800000 -6.2458 
-5.8598 0.900000 -7.0893 

 

 

 

Figure 17  95% Confidence Ellipse for Parameter Estimates α and β in Test Problem 6 

 

The iterative scheme converges to the final parameter estimates of 

                                                      8296.1;1893.9 −=−= βα                                            (3.6.2) 

The attendant curve fit is shown in Figure 15 while the probability density and cumulative 

distribution functions are shown in Figure 16. Based upon Confidence Model 1, the confidence 

interval endpoints for success probability are listed in Table 19. Similar information for 
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Confidence Model 2 is provided in Table 20. The confidence ellipse for this test problem is 

presented in Figure 17. The mean and standard deviation for this distribution are easily computed 

from the linear form (2.3.2) as 

                                                   54656.0;02256.5 −=−= σµ                                           (3.6.3) 

based upon the logarithm of the explanatory variable. From the asymptotic variance-covariance 

matrix, the standard deviations for the parameter estimates (3.6.3) are computed as 9.69016 and 

13.40990, respectively. 
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3.7 Test Problem 7: Aircraft Fastener Failure 

 This study involves the failure of aircraft fasteners under compressive loading. Series of 

tests were performed on collections of fasteners for ten different compressive loads measured in 

psi. For each fastener collection (or lot), a certain number of fasteners fail resulting in a binomial 

series with load as the explanatory variable. Table 21 contains the data for the series of fastener 

tests. For this test case, the load is directly used as the explanatory variable without transformation. 

As in the previous test problem, the logistic distribution is applied. The resulting linear fit is  

Table 21  Logistic Test Data for Test Problem 7 

Load (PSI) Lot Size Number Failing 
2500   50 10 
2700   70 17 
2900 100 30 
3100   60 21 
3300   40 18 
3500   85 43 
3700   90 54 
3900   50 33 
4100   80 60 
4300   65 51 

 

 

Figure 18  Linear Logistics Fit Form for Test Problem 7 
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Figure 19  Probability Distributions for Test Problem 7 

shown in Figure 18. The probability density and cumulative distribution functions for the logistic 

distribution are presented in Figure 19. In accordance with Confidence Model 1, the success ratio 

confidence interval endpoints are provided in Table 22. Corresponding endpoints for Model 2 are 

provided in Table 23. The confidence ellipse for distribution parameters α and β is shown in 

Table 22  95% Confidence Interval Endpoints (Model 1) for Test Problem 7 

Left Endpoint 
DX

Probability 
Estimate 

Right Endpoint 
DX

1745.1869 0.100000 2341.7176
2343.7843 0.200000 2794.1246
2721.8920 0.300000 3116.8377
3022.1416 0.400000 3393.5079
3290.9217 0.500000 3657.2709
3553.8612 0.600000 3931.5218
3834.3142 0.700000 4244.8644
4168.6696 0.800000 4655.5562
4657.8710 0.900000 5387.4483

Figure 20. As is evident, the fitting procedure functions quite well rendering the parameter 

estimates of 
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33971.5−=α  and 31054843.1 −×=β (3.7.1) 

Table 23  95% Confidence Interval Endpoints (Model 2) for Test Problem 7 

Left Endpoint 
DX

Probability 
Estimate 

Right Endpoint 
DX

1650.0926 0.100000 2285.9406
2298.4357 0.200000 2758.7448
2690.1111 0.300000 3087.8241
2995.9883 0.400000 3366.5277
3267.1356 0.500000 3629.7845
3530.3924 0.600000 3900.9318
3809.0960 0.700000 4206.8090
4138.1752 0.800000 4598.4844
4610.9794 0.900000 5246.8275

Figure 2  95% Confidence Ellipse for Parameter Estimates α and β in Test Problem 7 

The corresponding mean and standard deviation for this distribution are computed as 

460.3448=µ  and 813.645=σ (3.7.2) 

A variance can be calculated for these two parameters, i.e., 21086844.1 −×  and 21052363.1 −× , 

respectively. 
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4 CONCLUSIONS 

In this report, we have presented a discussion of sensitivity (or Go/No-Go) testing from 

basic principles. The prototypical set of sensitivity experiments is based upon the Bruceton test 

procedure, or the “Up and Down Method”, used to estimate the statistical parameters associated 

with a series of binary trials. The outcome of each binary trial is a random variable, and these 

random variables are independent and identically distributed. For the “Probit” method, the mean 

and standard deviation are estimated by fitting data to a normal distribution. For pharmaceutical 

applications, the so-called “dosage-mortality curve” is produced in the form of a linear fit. The 

behavior of the normal curve is then used to determine the probability of success associated with 

an explanatory variable of choice. For the Logit method, the logistic distribution is used since it is 

a bit more conservative near the tails, yet it looks a lot like the normal distribution. The set-up and 

execution of the Bruceton test procedure have been discussed for an example scenario. The 

importance of locating the mean is stressed as well is ensuring that extraneous data far removed 

from the mean is excluded from the analysis. Moreover, issues surrounding the efficiency of the 

data have been discussed. That is to say, we must obtain a sufficiently large sample in order for 

our analysis techniques and assumptions to apply. Algorithms for data analysis have been 

discussed in detail, particularly on the topics of Probit analysis, Logit analysis and confidence 

estimation. We have shown the set of equations required to fit go-no go data to the normal 

distribution and to the logistic distribution. These methods have proven capable and they readily 

address binomial trials on nonuniformly separated levels. The fundamental solution scheme 

discussed here is based upon Garwood’s method, yet we have presented an alternative to this 

method that can easily incorporate both binary and binomial trials. The algorithm structure works 

for both the Probit and Logit distributions. The alternate algorithm is stable and remains well-
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defined in every case. From the standpoint of sampling, we have discussed interval estimation for 

sensitivity tests. Algorithms have been suggested for the qualified estimation of probability 

confidence intervals as well as those for the mean and variance. We have also derived equations 

that allow the variance and covariance to be estimated for the normal mean and variance produced 

by our fitting procedure. Seven classic test problems have been chosen from engineering and 

biological science to serve as practical examples. These problems have been solved by directly 

coding the algorithms presented in this report. In each case, our results have achieved excellent 

agreement with archival solutions. Confidence regions have been computed for these cases. We 

have also discussed shortfalls that exist within our process for estimating intervals and for 

estimating elements in the asymptotic variance-covariance matrix. 

Sensitivity testing is very important, not only to the government sector, but also to the 

commercial sector, namely the pharmaceutical industry. The efficacies and effective dosages for 

medications are largely determined through this type of testing and analysis. In most cases, the 

statistical distributions produced by the analysis are used to make important management 

decisions. The investment in the development of a single medication can cost hundreds of millions 

of dollars. The cost of qualifying explosive systems is also high. For these reasons, it is important 

that we attain a good understanding of the probability and statistics. It is very easy to become mired 

in either of these fields. These divisions of mathematics undergird sensitivity testing and analysis. 

System reliability is of paramount importance for protecting both the investment of funding and 

human life. Failing to accurately estimate the reliability of a modern drug or engineering system 

can have grave consequences. 
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